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Abstract. Although natural (i.e. human) languages do not seem to follow a
strictly formal grammar, their structure analysis and generation can be approxi-
mated by one. Having such a grammar is an important tool for programmatic
language understanding. Due to the huge number of natural languages and their
variations, processing tools that rely on human intervention are available only
for the most popular ones. We explore the problem of unsupervisedly inducing
a formal grammar for any language, using the Link Grammar paradigm, from
unannotated parses also obtained without supervision from an input corpus. The
details of our state-of-the-art grammar induction technology and its evaluation
techniques are described, as well as preliminary results of its application on
both synthetic and real world text-corpora.
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1 Introduction

This work is grounded on the premise that the grammar of any language may be de -
rived (at least to some extent) in an unsupervised way from statistical evidence of
word co-occurrences observed in large unannotated corpora [1]. Following this idea,
Vepstas and Goertzel [2] proposed to use such learned grammar for programmatic un -
labeled dependency text parsing and part-of-speech tagging of raw text, for further ex -
traction of semantics. The Link Grammar (LG) formalism [3] is proposed to represent
the learned grammars, while parses are built by a maximum spanning tree (MST) al -
gorithm [2].

In earlier work [4] we have described the implementation of the software frame-
work capable to solve the described unsupervised language learning problem (to some
extent) for synthetic English corpora, and approach the solution for real-world Eng-



lish corpora. The major components of our research pipeline (see Fig. 1) are: text tok-
enization, word-sense disambiguation (WSD), parsing, and grammar learning, with
subsequent indirect evaluation of the produced grammar (by producing LG parses for
a test corpus using the synthetic grammar and comparing them against expected
parses).  

Although text tokenization is a problem that can be attacked in an unsupervised
manner [5], our current work has not attempted this seriously; for now, we rely on a
rule-based English tokenizer. The WSD part of pipeline has shown promising results
in earlier works [4,6], providing noticeable improvement in the quality of the learned
grammars and it is not discussed herein.

The MST-parser has proved to be a critical component of our pipeline, as it pro-
vides input to the grammar induction process. Ongoing development in this area is
worth separate discussion, but its importance is confirmed by the findings presented
below. 

This paper focuses on the part of the pipeline responsible for induction of a Link
Grammar dictionary from input parses, on the process for evaluation of such gram-
mars, as well as on the results obtained from our research efforts.

Fig. 1. Overall architecture of the unsupervised language learning pipeline, composed of a Pre-
Cleaner responsible for tokenization, Text Parser (using either MST-Parser, or Link Grammar
Parser or Hybrid Parser combining results of the previous two), Grammar Learner which in-

duces a grammar from parses, and Grammar Tester that evaluates the learned grammar.

The fundamental importance of this research is based on the assumption that un-
derstanding natural human language acquisition is one of the keys to decipher the na -
ture of human intelligence [7] and unlock the path to artificial general intelligence
(AGI) [8]. Unlike other approaches to unsupervised language acquisition [9], our
framework creates a language model that, in contrast to a neural network “black box”,



consists of a human-comprehensible formal grammar contained in a LG dictionary
file. Such file lists grammar rules that can be further reviewed, edited and extended by
human computational linguists, or used by the Link Parser software (https://github.-
com/opencog/link-grammar) to parse previously unseen text in the target language.

From a practical standpoint, the goal of the unsupervised language learning (ULL)
project is to automate the process of building, or extending, formal grammars of hu -
man languages. These grammars could then be applied on the comprehension and
production of text and speech in computer software, and artificial intelligence applica -
tions involving natural language processing. 

2 Grammar Induction Architecture and Implementation 

Our proposed method for grammar induction, part of the open-source OpenCog Unsu-
pervised Language Learning (ULL) project, is implemented as its Grammar Learner
(GL) component and is represented on Fig. 2 (code can be found at https://github.-
com/singnet/language-learning). This section dissects the steps necessary for this
process.

The Grammar Learner component takes as input a set of dependency parses with
undirected unlabeled links, which are used to create a word-vector space. Inspired by
representations using a Shifted Positive Pointwise Mutual Information word-context
matrix [11], the created word space is described by a sparse matrix M in which each
row i corresponds to a word, each column j to a context in which the word appeared,
and each matrix entry Mij corresponds to some association measure between the word
and the context. From a given input parse, we extract each word’s connectors as those
context-words linked to it, as well as a label “-” if the context-word appears to the left
of the reference word in the sentence, or a label “+” otherwise. A connector-set for a
word (also called a “disjunct” [4]) is composed of all the connectors it has in a given
parse tree. We then build the word-vector space matrix using either connectors-sets
(for smaller corpora) or plain connectors (for the larger “Gutenberg Children Books”
dataset) as the words contexts.

A variety of interaction metrics can be used as association measures: mutual infor -
mation [12] and co-occurrence frequency were implemented, resulting in dense and
sparse matrix representations, respectively.

The Space Formation sub-component implements cleanup options for the sparse
word space, filtering low frequency words and links. Further development suggests
pruning words, connector sets, and word-context links based on mutual information or
other interaction information criteria. 

Singular Value Decomposition (SVD) [13] can be applied to the sparse vector
space to produce dimensionally-reduced dense vector representations (word embed -
dings). However, this approach provided unstable results when applying K-means
clustering, so totally different distributions of words across clusters were formed with
different random seeds. Using other clustering algorithms, no clusters were obtained
at all.

An alternative approach was to project the filtered word space onto a vector space
similar to multivariate Bernoulli distribution [14], with each word represented as a

https://github.com/singnet/language-learning
https://github.com/singnet/language-learning
https://github.com/opencog/link-grammar
https://github.com/opencog/link-grammar


sparse j-dimensional vector of binary variables. In this space, each variable describes
the interaction between a word and a context (connector or connector-set), taking the
values 1 if a word appears in a given context, or 0 otherwise. Exploring the properties
of the resulting word space and whether these variables are correlated or dependent is
an objective of further exploration. This approach smooths the influence of word fre -
quencies and the distribution of interaction metrics on word vector similarities. How-
ever, preliminary studies have shown that rarely occurring words may have negative
impact on the quality of space and consistency of the following results obtained from
it. That means, more research is required to suppress such “noise” based on frequency
filters.

Fig. 2. Detailed architecture of the Grammar Learner component of the ULL pipeline.
Grayed (dimmed) components of the architecture are designed but not currently implemented,

and “TBD” blocks specify that new algorithms for a given stage of the process may be added in
the future. Dashed lines indicate reverse flow direction, introducing loops in the pipeline. 

The Clustering component may use various algorithms: beyond common K-means,
the present research effort implemented and studied mean shift and agglomerative
(ALE) clusterings, as well as grouping Identical Lexical Entries (ILE). 

K-means clustering [15] of word embeddings used in our previous studies [4]
turned out to introduce instability during the optimization of the entire pipeline pa-
rameters, so it was used only during earlier phases of the research. Also, our first re -
sults for mean shift clustering [16] were not significantly better than ALE. Hence, re-
sults for K-means and mean-shift clustering are not presented in the next section.

Agglomerative clustering in sparse vector space (implementation from
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClus-



tering.html), further referred to as “ALE” (Agglomerating Lexical Entries), proved to
be the best fit for larger datasets.

While testing similarity metrics for ALE, Euclidean distance provided better results
for larger datasets than cosine and Manhattan distances. The clustering quality was
evaluated with the Silhouette index for cosine, Jaccard, Euclidean, and Chebyshev
similarities; cosine distance was preferred for smaller datasets. For larger corpora, all
tested variations of the Silhouette index were close to zero, so no programmatic deter -
mination of the optimal number of clusters to create was possible (as opposed to our
earlier work with K-means [4]). Therefore, we explored the target-clusters parameter
space using 20, 50, 500, 1000, and 2000 clusters.

The ILE algorithm introduced in our previous work [2,4] actually implements loss -
less compression of a vector space by grouping words with the same sets of associ -
ated connectors or connector-sets into grammatical categories. The resulting space can
be considered a straight projection of a fine-grained LG dictionary with the maximum
number of word categories onto the space of connectors or connector-sets. However,
ILE clustering creates very sparse LG dictionaries that could not be processed by the
LG parser in its current version, due to combinatorial explosions and stack overflow
issues in run-time.

Further development suggests iterative clustering process, involving incrementally
increasing volume of input data from smaller amount of high-frequency words to
larger amounts of less frequency words. In such case, the dimmed Classification com -
ponent in Fig.2 could be used to attempt to classify newly experienced words to some
of the categories learned from the previous iterations. Then, if some of words are not
classified, they can be used to learn new clusters to be added to set of the categories.
Still, exploration of the described flow has been not included in this study.

Category Generalization can be applied after Clustering for further aggregation of
the learned word categories, based on Jaccard similarities of sets of connectors or
connector-sets associated with them. Similarity thresholds can be set as generalization
parameters; by gradually decreasing the threshold from the maximum found in the
category distribution to a desired value, an iterative generalization process can be set
up to provide hierarchical category trees showing the inner structure of categories ag -
glomeration. Category Generalization results are not presented below, as Grammar
Rules Generalization with the same algorithm demonstrated more efficiency.

The Grammar Induction component infers a grammar in the LG formalism [3] by
processing links from input parses and replacing words with their corresponding
learned word categories. Sets of links corresponding to each word, expressed in terms
of word categories, form Link Grammar disjuncts for the category of the word. Link
Grammar rules are sets of disjuncts associated with word categories. 

Finally, the Grammar Rule Generalization component may be used to further clus-
ter the learned word categories based on Jaccard similarities of sets of Link Grammar
disjuncts associated with the categories in the Link Grammar rules. This component
also adds an “upper layer” to the grammatical category tree on top of the “middle”
layer representing word categories, which is anticipated to correspond to higher-level
grammatical and semantic categories.



Optionally, the grammar learning process may be run in an iterative loop, using
word categories from grammar rules found in a previous iteration as input to catego-
rize words in subsequent iterations. The Category Tagging component replaces the
words in input parses with learned categories (when available) so that more and more
dense vector spaces may be created on subsequent iterations. The same iterative ap -
proach may be employed for incremental grammar learning, where the scope of the
input parses gradually increases by adding previously unseen data to the training cor-
pus.

3 Grammar Testing and Evaluation Metrics 

The Grammar Tester (GT) component of the ULL pipeline implements a quality as -
surance procedure on the induced grammar obtained by the Grammar Learner. Two
metrics are employed for this purpose: parse-ability and F1-score, as shown in Fig. 4.

The first quality criterion determines the extent to which the reference corpus is
parsed at all – it is called “parse-ability” (PA) and computes the average percentage of
words in a sentence recognized by the GT: PA = (Σ(ki/ni))/N, where N is the number of
evaluated sentences, ki is the number of words in the i-th sentence recognized by the
GT, and ni is the total number of words in i-th sentence.

As a second metric, we use the conventionally defined F-measure or F-score ( F1),
a function of recall (R) and precision (P): F1 = 2*R*P/(R+P). Recall is defined as
R=(Σ(ci/ei))/N, and precision as P=(Σ(ci/li))/N, where ci is the number of correctly
identified links in i-th sentence, ei is the number of expected links and li is the number
of identified links, including false positives. That is, for recall we take the average
per-sentence number of overlapping links in test and reference parses divided by the
total number of links in the reference parses. Respectively, for precision we take the
same overlapping number, divided by the total number of links in the test parses.

4 Methodology of Studies and Intermediate Results

Our experiments for the ULL pipeline were performed with the three English text cor -
pora referenced in earlier work [4] and presented on Fig.3: 1) an artificial corpus cre -
ated for basic testing purposes, the Proof-of-Concept English (POCE) corpus; 2) the
Child Directed Speech (CDS) corpus obtained from subsets of the CHILDES corpus –
a collection of English communications directed to children with limited lexicon and
grammar complexity (https://childes.talkbank.org/derived/) [17,18,19]; 3) the Guten-
berg Children (GC) corpus – a compendium of books for children contained within
Project Gutenberg (https://www.gutenberg.org), following the selection used for the
Children’s Book Test of the Babi CBT corpus [14] (https://research.fb.com/down-
loads/babi/).

For each of these corpora, we ran our Grammar Learner using two different kinds
of parses as input: first, our “standard” parses created either manually (for the POCE
corpus), or parsed by the LG parser using the standard human-crafted Link Grammar
Dictionary for the English language – further called LG-Parses. The second type of
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parses used are MST-Parses created by the previous segment of the ULL pipeline, in -
cluding parses with WSD applied [4]. The human-knowledge-based LG-parses were
used as a reference to asses the quality of MST-parses, as well as to create a baseline
input for the GL to gauge its ability to induce grammar from “ideal” parses. 

Corpus Total
words

Unique
words

Occurrences
per word

Total 
sentences

Average 
sentence length

POC-English 388 55 7 88 4

Child-Directed Speech 124185 3399 37 38181 4

Gutenberg Children 2695151 54054 50 207130 13

Fig. 3. Some features of the English text corpora used for studies. See [4] for more details.

Corpus Parses Parses F1 Clustering Grammar PA Grammar F1

POC-English Manual 1.0 ILE 100% 1.0

POC-English Manual 1.0 ALE-400 100% 1.0

POC-English MST 0.71 ILE/G 100% 0.72

POC-English MST 0.71 ALE-400 100% 0.73

Child-Directed Speech LG 1.0 ILE 99% 0.98

Child-Directed Speech LG 1.0 ALE-400 99% 0.97

Child-Directed Speech MST 0.68 ILE/G 71% 0.45

Child-Directed Speech MST 0.68 ALE-400/G 82% 0.50

Gutenberg Children LG 1.0 ALE-50 90% 0.61

Gutenberg Children LG 1.0 ALE-500 56% 0.55

Gutenberg Children MST 0.52 ALE-50 N/A N/A

Gutenberg Children MST 0.52 ALE-500 81% 0.48

Fig. 4. Best scores for F-measure (F1) and parse-ability (PA) for different corpora and parse
types using different clustering algorithms: ILE – Identical Lexical Entries, ILE/G – ILE with
Grammar Rule Generalization, ALE-400 – Agglomerative clustering for 400 target categories,
ALE-400/G – same with Grammar Rule Generalization, ALE-50 and ALE-500 – Agglomera-

tive clustering for 50 and 500 target categories, respectively.

Based on the study of the various configurations of the Grammar Learner with dif -
ferent parses for each given corpora, and having generated approximately 100 in -
duced grammars and evaluated them as specified before, we present the best results
obtained in Fig 4. From this experience, the following observations can be made:

1. It is possible to perform grammar learning using a non-dimensionally-reduced
discrete vector space of lexical entries (Link Grammar “disjuncts”) without dimension



reduction, based on identical lexical entries (ILE clustering) and using agglomerative
clustering for English corpora of different scales, achieving reasonable scores for
parse-ability and F-measure (PA/F1), using either parses obtained with English Link-
Grammar dictionary (LG-parses) or MST-parses, as shown on Fig.4.

2. It has been found that for real-world corpora such as CDS and GC, better PA/F1
scores are obtained if the evaluation of the grammar is performed only for sentences
for which the LG-parses are complete (the LG parser is allowed to ignore some words
from a parse if a “cheaper” parse tree is found with an incomplete sentence). This
way, the comparison is less likely to be done against originally incorrect parses. 

3. We found a large Pearson correlation (93-100%) between the distributions of F-
scores of MST-parses against LG-parses, and that of the parses obtained based on the
grammar induced from these MST-parses against the same LG-parses. This effec -
tively means that the quality of a learned grammar is linearly related to the quality of
its input parses.

4. No reliable correlation between PA and F1 was found across corpora: in some
cases (POCE, cleaned version of CDS and raw GC) it is positive, for another one it is
close to zero (raw CDS), and for a third one it is negative (cleaned version of GC).
That means PA can not be used as a metric for hyper-parameters optimization when
we lack a standard (like LG-parses) to measure F1.

5. It has been shown that applying word-sense disambiguation before MST-parsing
can improve the parses, providing higher F1 against their LG-parses standard. For the
POCE corpus, F1 (on MST-parses only, not from grammar induction) improves from
0.70 to 0.75; in the case of the GC corpus, it grows from 0.50 to 0.52. As predicted by
the point 3 above, the quality of the learned grammar increases as well.

6. The results shown in Fig. 5 were achieved by either grouping identical lexical
entries (ILE) or agglomerative clustering (ALE), both starting from a discrete vector
space of lexical entries (Link Grammar disjuncts) without dimension reduction. These
results replace the ones from previously-used dimension reduction with singular value
decomposition (SVD) and K-means clustering. Such changes provide higher F-scores
and reproducibility, allowing optimization of the pipeline’s hyper-parameters.

7. It has been found that the number of clusters, representing grammatical cate-
gories, that provides the best F1 for produced parses is about 500 for the real-world
English corpora (CDS and GC). A decrease in the number of clusters/categories tends
to increase PA and decrease F1 rapidly; using more clusters tends to reduce both PA
and F1 slowly. Also, inducing grammars with less than 50 categories on the GC cor-
pus causes exponential run-time growth for the LG parser using them, as well as seg -
mentation faults on particular sentences. 

8. We noticed that removing parses with low-frequency words from the GL input
may decrease the grammar induction run-time, but never increase quality (either PA or
F1) given our corpora; literally “the more words, the better”. 

9. Figure 5 shows that it is possible to use generalization of the learned grammati -

cal categories into hierarchical trees to unravel the grammatical and semantic nature
of their vocabulary in a reasonable way, corresponding to the context of the training

corpora. These categorical trees can be useful for feature engineering in NLP applica -
tions, as well as for studies of new languages or domains by computational linguists.



Fig. 5. Fragment of a category tree learned from the Gutenberg Children corpus in an unsuper -
vised way, showing subgraphs matching the word “day”. Visualized with the Aigents Graphs

framework (https://github.com/aigents/aigents-java/blob/master/html/graphs.html).

5 Conclusion

We can conclude that it is generally possible to perform programmatic unsupervised
induction of formal grammars from unannotated sentence parses for tiny, small and
large text corpora, using the Link Grammar formalism and parser. We have found that
quality of the grammar is linearly correlated with quality of the input parses used to
induce the grammar. That is, the quality of the input parses seems to be the major ob-
stacle for obtaining high quality grammars.

Future plans for our work include searching for ways to improve the quality of the
input parses obtained in an unsupervised way from unannotated text corpora, as well
as enhancing the grammar-induction technology itself. For the latter, we intend to im -
prove the GL component to learn generalized parts of speech and grammatical rela-
tionships through better clustering.
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