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Abstract. We discuss technology capable to learn language without supervi-
sion. While the entire goal may be too ambitious and not achievable to full ex-
tent, we explore how far we can advance grammar learning. We present the cur -
rent approach employed in the open source OpenCog Artificial Intelligence
Platform, describe the cognitive pipeline being constructed and present some in-
termediate results.
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1 Introduction

This work is driven by a desire to make sense of the possible mechanisms underlying
natural intelligence and applied to language-based communication skills. According
to earlier work [1,2,3], human intelligence is substantially connected with language
acquisition abilities. As pointed out in [1], most of such acquisition is loosely super-
vised, while existing machine learning techniques require more effort and training
data to reach the level of human children.

Another point being made in [2] is that current natural language processing appli -
cations require a formal grammar or an annotated corpora as input. In practice, how -
ever, the cost of creating such grammars results in a lack of good-quality ones for
many languages. Indeed, several years of human effort are required to create a formal
grammar for a language, given formalisms such as Link Grammar (LG) [4]. While
this has been done to great extent in English, as the language most widely used in
electronic communications, other languages are far less represented, and for many
natural languages such effort has never been undertaken. Even for English, the exis-
tent grammar dictionary in Link Grammar can only handle literary English texts and
fails to support deviations, like dialects used in chat rooms, or domain-specific jargon.
Our work, aiming to automatically produce a grammar from unannotated text, could
potentially reduce the effort needed to process any language and make it comprehen -
sible by software.



Moreover, many natural language processing (NLP) applications for text mining
and information extraction rely on pattern-based approaches for classification, entity
extraction and attribution [5]. For such applications, it is crucial to have a way to
identify textual patterns which could be used for entity extraction, as well as for find -
ing relationships between entities. That is, the patterns should be flexible enough to
represent different textual representations of the same semantic entity as well as to de-
scribe patterns of connections between such entities represented in text. Technology
that infers these patterns in an unsupervised way, given prepared (controlled) corpora,
could be highly valuable, as it would make NLP applications cheaper, faster, more
precise and efficient.

A system like the one we propose would also help approach the artificial general
intelligence problem known as ”Baby Turing Test” [6]. While the classic “Turing
Test” expects an AI system to display conversational intelligence comparable to a hu -
man, it does not prevent such system from being simply hardcoded, and does not
guarantee that the system actually learned its abilities through education and interac -
tion with its environment. In turn, the “Baby Turing Test” requires that an “unedu -
cated” system undergoes the process of experiential or didactic training, and eventu-
ally develop skills sufficient to pass the classic “Turing Test”. Our work could help on
this goal, at least from a comprehension perspective, so that an artificially intelligent
system could be incrementally fed with information in a given language, and eventu-
ally make sense of this information and new information of similar kind, like texts in
the known language within the same knowledge domain.

The overall direction of research is shaped by earlier works [2, 3], and it’s based on
representing linguistic structures as “sheafs” of graphs [7], where the elementary
structures of the graphs are represented with so-called “disjuncts” from Link Gram -
mar [4], which can then be used to infer a grammar in Link Grammar format. The in -
put of the grammar-learning process are statistical parses generated with a minimum
spanning tree (MST) approach based on “mutual information” computed for co-oc-
curring words in sentences [8].

In this work, we discuss some practical aspects of implementing the NLP pipeline
for unsupervised language learning (ULL), including building a vector space [9], its
dimension reduction (DR), and unsupervised category learning grammatical and se -
mantic concepts by means of clustering [10, 11, 12, 13, 14, 15]. We will also consider
the different approaches for word-sense disambiguation (WSD) applied [16,17].

All of the research and developments discussed further are performed in the scope
of the open source OpenCog project [18] and SingularityNET platform.

2 Background

For the work discussed in this article we are making certain assumptions and consid-
ering specific options, as discussed below. We are not sure if unsupervised learning on
unannotated corpora with neither grounding nor reinforcement feedback can succeed
at all. Still, we do want to advance in this direction to see if we can learn at least most
of the grammar and some of the semantics. We also understand that there is no clear
boundary between grammatical and semantic categories, because certain semantics



categories such as time, gender and plurality may affect grammar to extents specific
to particular languages. To make the problem solvable at least to some extent, we can
make certain simplifications and relaxations, as follows. 

Controlled Corpora. Although unannotated, our learning corpora are pre-pro-
cessed to reduce the amount of gibberish (tables, graphics, mixed languages, etc.)
found in them, as they are obtained from public sources.  We also use corpora of dif-
ferent complexity in the following order, targeting different goals.

 Proof-of-Concept Turtle (POC-Turtle) corpus - represents closed semantic
space of very few words communicated in simplex Turtle language [19],
used in semantic web programming, with complexity limited to three words
per sentence in strict Subject-Verb-Predicate triplet grammar. Complexity of
such language can be thought closer to complexity of language that non-hu-
man primates can learn [20] or that children at age up to 3 can use [21]. 

 Proof-of-Concept English with no ambiguity (POC-English-NoAmb) cor-
pus - manually created closed semantic space of very few English words with
nearly the same frequency of use, communicated in simple grammatical con -
struction of 4-5 words per sentence, without any ambiguous words.

 Proof-of-Concept English with ambiguity (POC-English-Amb) corpus –
similar to the above, but with two words involved in semantically and gram-
matically ambiguous constructions. Semantic ambiguity is represented by
word “board” which can be either board of a ship or black board. Grammati -
cal ambiguity is represented by word “saw” which can be either noun or past
form of verb “see”.

 Child Directed Speech corpus - collection of English communications di-
rected to children with adapted lexicon and grammar complexity.

 Gutenberg Children and Adult corpora - children and adult subsets of liter-
ary corpora collected within Gutenberg Project (see https://www.guten-
berg.org/).

Incremental Learning and “One-shot Learning”. Incremental learning approach
may be interesting from a number of perspectives. There are different points of view
whether using simplified language when conversing to child can advance language
learning or complicate it [1]. In real life the richness of lexicon increases gradually
over years of child development. So we would like to use both approaches. In one ap-
proach called “One-shot Learning”, we would try to have entire grammar learned at
one upon one successful reading of entire corpus. In the other one called “Incremental
Learning”, we would split the corpus into sections with gradually increasing complex-
ity (in terms of either maximum sentence length of richness of lexicon or both), trying
to capture more grammatical constructions incrementally. During the second approach
we would measure the learning curve tracking the ability of developing system to pass
the Baby Turing Test [6]. 

Symbolic vs. Sub-symbolic approach. We are not limiting ourselves to use either
“old school” symbolic approach such as LG [4] or “new school” of distributional rep -
resentations in NLP with its latest advances [9]. In fact, we are planning to try both
and it is anticipated that the final solution will be a combination of the two. 



Variety of Vector Spaces. Generally, the word space can be represented with vec-
tor embeddings created by a number of sub-symbolic approaches. The most widely
used vector space is the space of words, either “Bag-of-Words” or “Skip-gram” [9]. In
our work we study the ways of replacing word tokens with word senses defined ear -
lier. We also introduce the space of connectors - directed connectors between words,
so the word “like” in phrases “like you” and “you like” would form two different di -
mensions “like-” and “like+” following the Link Grammar notation [2,4]. Finally, we
will also introduce the space of disjuncts so the word “like” in phrases “I like you”
and “you like me” would form two dimensions corresponding to the disjuncts “I- &
you+” and “you- & me+”. Notably, the space of words is the most dense, the space of
connectors is up to two times more sparse, and the space of disjuncts might appear or-
ders of magnitude more sparse on large corpora.

Disambiguation. Since we are going to use statistical parsing, the question arises -
how to compute mutual information for ambiguous words. In the sentence “I saw the
saw”, we can try disambiguating “saw” into “saw@noun” and “saw@verb” prior to
calculating the MI, thus facilitating the parser task. The alternative is to parse the text
as is, and later try to find the different senses of each word. We will try both options.

Mutual Information Counting. Another question is whether mutual information
(MI) should be direction-sensitive, so we count directed links between words [4], or
direction-insensitive, so we count co-occurring word pairs no matter what their mu-
tual positions are. We are counting directed links but co-occurrence counting is possi-
ble as option to try. 

Morphology. The importance of morphology in language comprehension and
learning is well understood and there are approaches known to handle that [2,3].
However, for now we do not consider this level of complexity. We deal with word to -
kens as entire symbols, disregarding their internal morphology and potential token in-
teractions.

3 Natural Language Pipeline Architecture 

The general overview of the cognitive pipeline architecture for the current stage of the
project is presented below. Further, we describe specific the components, with their
options. In the current implementation the pipeline is linear, so no iterative loops can
take place at the moment. The entire pipeline with most of components is being devel-
oped as open source at https://github.com/singnet/language-learning with TextParser
is being maintained as part of OpenCog at https://github.com/opencog/opencog/.

1. Text Pre-Cleaner - preprocesses corpus files with configurable cleanup and
normalization options (is implemented now).

2. Sense Pre-Disambiguator - optionally, performs word disambiguation and
builds senses from tokens (is being implemented now).

3. Text Parser - parses sentences of word tokens or senses with one of the possi -
ble approaches (is implemented now but may be improved in the future).

4. Grammar Learner - learns word categories from parses, infers grammar in
LG format (is implemented now and improvements are ongoing).

5. Tester/Evaluator - evaluates quality of inferred grammar (is implemented).

https://github.com/singnet/language-learning


Text Pre-Cleaner. The goal of this component is to standardize corpora tests, re-
moving HTML markup and graphics, normalizing different varieties of the same
punctuation marks, interpreting UTF codes, and optionally converting all characters
to lowercase. Although there is controversy about representing the capitalized and
lower-cased versions of a word as the same token (e.g. “You” and “you”), we cur -
rently proceed with converting all texts to lower-case, on the basis that capitalization
is not expressed explicitly in spoken conversations, and that all words have the same
pronunciation regardless of their location in a sentence. This avoids a single meaning
to be represented as two distinct vectors, one for each of its capitalized and non-capi-
talized versions. We may move past this point in future work and represent them indi-
vidually.

Sense Pre-Disambiguator. In order to use appropriate word-sense entries for mu-
tual information counting during statistical parsing, we may try to disambiguate word
tokens before the parsing takes place. For doing so, we may use distributed represen -
tation of words with n-grams and skip-grams in vector space of adjacent words [9] us-
ing AdaGram to provide word-sense disambiguation [17]. AdaGram extends the
renowned Skip-gram methodology of word2vec [9] to include one vector embedding
per word-sense, without fixing a number of senses per word a priori.

Text Parser. This component implements two phases: Mutual Information (MI)
counting, with the Observer sub-component, and Minimum Spanning Tree (MST)
Parser, accordingly to earlier design [3,8]. 

Mutual information calculation during the Observer phase may be implemented in
one of four ways: a) cartesian combination of per-sentence words without account for
distance; b) cartesian combination of per-sentence words with account for distance; c)
sampling all parses produced by the Link Grammar Parser in random parsing mode;
d) sampling limited number of parses from the Link Grammar Parser in random pars-
ing mode.

The pointwise mutual information (PMI), also known as focus mutual information
(FMI) or association ratio [12] for an ordered pair of words (x, y) is a measure of the
level of association of the two words in a given context, and is computed as:

PMI(x,y)  = log2( p(x,y) /  (p(x) ⋅ p(y)) )

where p(x), p(y), and p(x,y) are short for P(X=x), P(Y=y) and P(X=x, Y=y) respec-
tively. Here X the is the random variable of the event of watching a word x to the left
of any other word in a sentence, i.e. the probability of observing the ordered pair (x,*).
Similarly, Y is the random variable of the event of watching a word y to the right of
any other word in a sentence, i.e. the probability of observing the ordered pair (*,y).
Thus p(x,y) is the probability of observing the ordered pair (x,y) in a sentence. In turn
this probabilities are calculated as:

p(x) = N(x,*) / N(*,*)
p(x) = N(*,y) / N(*,*)

p(x,y) = N(x,y) / N(*,*)



Notice tha N(x,y) is not necessarily the same as N(y,x). PMI is a ratio that compares
the probability of observing the two words together in a specific order vs observing
them separately, and therefore lies in the range (-∞, ∞).

The way N(x, y) is counted (the number of appearances of the pair (x,y) in the cor -
pus) depends on choice from the above-mentioned methods. For cartesian combina-
tion methods (options a and b above), the pair (x, y) is counted only if x and y occur
within distance R (a parameter) in the current sentence (distance r is defined as differ-
ence in word position in the sentence: r = pos(y) - pos(x)). When disregarding dis-
tance, they are counted one time per co-occurrence: N(x,y) = ∑r < R(1), across all ap-
pearances of x and y in each of the sentences in the corpus. When accounting for dis -
tance, we count the pair R/r times: N(x, y) = ∑r < R(R/r), so the words in greater
proximity are getting more counts, with default count as R instead of 1.

For counting methods c and d above, the LG Parser can produce an exhaustive set
of possible parses for a sentence, regardless of any grammar or prior knowledge on
relationships between words. We can consider all possible parses if sentence length is
small (method c), or select a number N (a parameter) of randomly chosen parses, for
longer sentences where number of possible trees bursts exponentially. In these meth -
ods the pair (x, y) is counted each time x and y are linked together in a parse tree for
the given sentence.

Once mutual information is collected, our MST-parser approximates the spanning
tree with highest total MI [8], and returns that as output. A tree’s MI score is com -
puted as the sum of all linked word pair scores, where score is mutual information per
word pair. In this step, we also test if accounting for distance in different ways im-
proves the resulting parses: i) Score = PMI * R/r; ii) Score = PMI + 1/r; iii) Score =
PMI + R/r, with r and R as defined above.

Grammar Learner. This pipeline component processes the parse trees produced
by the Text Parser in two phases: Category Learning and Grammar Induction. The
Category Learning phase includes Vector Space modeling, Clustering, and optional
Generalization sub-phases.

The Vector Space dimensions are chosen from: a) words - either word tokens or
word senses; b) connectors [3,4]; c) disjuncts [3,4]. Positive pointwise mutual infor -
mation (PPMI) [12] is used for term weighting. 

Clustering is performed using “sub-symbolic” or “symbolic” approach. The “sub-
symbolic” Unsupervised Category Learning includes dimensionality reduction (DR)
with singular value decomposition (SVD) [13] and K-means clustering [14]. The opti-
mal number of clusters is selected based on maximum Silhouette index [15] value. 

The alternative “symbolic” approach to clustering the disjunct space implies con-
secutive merging the single-germ-single-disjuncts (“seeds”) extracted from the parse
tree into single-germ-multi-disjunct “stalks” and multi-germ-multi-disjunct lexical en-
tries.

The optional generalization agglomerates the learned categories (clusters) into
higher-level grammatical categories, preserving relationships between child and par -
ent category clusters.

Grammar Induction infers grammar links between the learned categories (clusters)
by statistical processing the parse tree. The Link Grammar rules are induced for the



learned set of clusters as either a) sets of connectors to the linked clusters or b) sets of
disjuncts consisting of connectors to clusters. 

Grammar Tester. Purpose of this component is to provide fitness function for en -
tire pipeline with options and parameters configured for every pipeline component
and each of its sub-components. There are two ways the fitness function can be evalu-
ated. First, we may use inferred grammar in LG format and try to parse original text
with given grammar configured for LG parser. Then, counting percentage of success -
fully parsed sentences and words per each sentence would give use usability value of
the learned grammar, calling it “parse-ability”. This approach would work for any lan -
guage, including unknown languages, however it can not provide warranty that the
grammar makes any real sense from linguistic perspective. Second, alternative ap-
proach can be tried for languages that are well studied by computational linguistics
such as English, where LG dictionaries and grammatical rules are present. For the lat -
ter case, we we can compare LG parses of original corpus done with native English
LG setup as well as with inferred grammar. The proximity across parse trees on sen -
tence-per-sentence basis for these two parses, called “parse-quality”, would serve us
fitness function rendering to which extent rules that we learn are close to ones created
by human computational linguists.

4 Intermediate results

The results obtained for the current state of the project can be split into a few sections.
First, we discuss the use of words, connectors or disjuncts for building the vector
space of real-size corpora. Next, we move onto studying different options to count
mutual information and perform statistical parsing. Then, we systematically explore
the possibility of learning valid Link Grammar dictionaries and rules for simplistic
Proof-of-Concept corpora for Turtle and English languages. Finally, we study the pos-
sibility of using word-sense disambiguation before parsing, and if its use can improve
the quality of Grammar Learning. All corpor and intermediate results are available at
http://langlearn.singularitynet.io/data/ site.    

At the beginning of the current stage of the project, efforts have been made to try
unsupervised word category learning with Gutenberg Adult corpus data, available
from the earlier stage of the project [3]. 

Unfortunately, the data was of low quality, with multiple non-English texts mixed
with English ones, lots of special characters and pseudo-graphics included, and only
cumulative information on counts of words, connectors and disjuncts extracted from
original parses, with no actual parses present. However, using MST parse trees as in-
puts, we were able to build vector spaces of words and connectors and perform clus -
tering. 

It has turned out that, after cleaning the data, for 324K words, there were 12M
links between the words. Respectively, in vector space of words, there were 324K
original dimensions and in vector space of connectors there were 285K words on the
left and 295K on the right, so initial dimension for the vector space has effectively
doubled. It was found that using original vector space of words, we were not able to
identify sensible word categories, due to sparseness of the vector space.

http://langlearn.singularitynet.io/data/


Further, we used a cleaned set of link pairs extracted from the original MST parse
trees, accepting only words having more than 85 unique neighbors total, on left and
right. It provided us with 31K words appearing in space of 61K connectors with 9M
links between the words, so 9.4% words from original data set were supplying 76.2%
of links. Using this vector space of connectors, we could clearly identify clusters of
words in different languages, proper names, numeric values, and parts of speech.
However, due to multiple inconsistencies in training corpus found, we did not proceed
with this corpus further for grammar learning, to have re-iteration with this corpus
later, when we can confirm that grammar can be actually learned with more simple
corpora, as discussed further.

To determine which word-pair counting method better fits the natural “sampling”
of parses using LG “ANY” mode, we have computed the Pearson correlation coeffi -
cient (PCC) across distributions of FMI values for our POC corpora, between this
method and the cartesian combination of per-sentence words, with and without ac-
counting for distance. For the POC-English corpus, we have discovered that the PCC
between LG “ANY” and cartesian product, without taking distance into consideration,
is 83%; instead, when we consider distance in the cartesian method, we get a PCC of
96%, which indicates that the methods produce very similar FMI. Due to its simplic-
ity and good correlation, we will the default should be method of window-based word
co-occurrence counting with account for distance (method b in section Text Parser
above) to calculate FMI.

We have also studied to which extent the “expected” English parses, created manu -
ally for our POC corpora, correspond to parses provided by Link Grammar Parser
with standard English dictionary. It is found that, for the POC-English-NoAmb cor-
pus, the “expected parses” and the LG parses share around 97% of their links. Simi-
larly, for the POC-English-Amb corpus, they share 93% of their links.  Based on their
similarity, we will use “expected” parses, instead of Link Grammar parses, for “parse-
quality” fitness function.

We used “parse-quality” fitness function to compare different versions of MST-
Parsing with (a) “expected” parses created manually. For POC-Turtle, it has been
found that using (c) “cartesian” combination with account for distance as well as (e)
LG “ANY” parses the “parse-quality” is 92% while using (d) “cartesian” combination
with no account for distance provides “parse-quality” of 50% only. For POC-English,
(c) “cartesian” combination with account for distance provides best quality of 66%,
while (e) LG “ANY” parses the “parse-quality” provides 60%, and (d) “cartesian”
combination with no account for distance is the worst at 50%. For further work, we
choose to use MST-Parsing option (c) “cartesian” combination with account for dis-
tance, since it provides the best “parse-quality”.

For systematic study of possibility of grammar inference with our pipeline, we
have used two simplistic corpora with no ambiguous words in them, namely POC-
Turtle and POC-English. For input parses used for grammar learning we used five op -
tions: a) “expected” parses, created manually, with account to LG parse tree conven -
tions; b) native LG parses with known English LG setup (for POC-English only); c)
Text Parses based on “cartesian” combination of words within window and account
for distance; d) same as c) but without account of distance; e) LG “ANY” parses, con-



sidering all possible parses for the sentence without any grammar knowledge. Four
different configurations of Grammar Learner were used. For each of the configura -
tions, different ways of modeling vector space with Connectors or Disjuncts, cluster-
ing with Dimension Reduction and K-means (DRK) or collection of Identical Lexical
Entries (ILE) and grammar induction with Connectors or Disjuncts were used.

For the two corpora, using different configurations of Parser and Grammar
Learner, we were able to get the following results from perspectives of “parse-ability”
and “parse-quality”. Pearson correlation coefficient between parse-ability and parse-
quality has turned to be 85%, which means that being able to make parse at all
means been able to make it right. When using Turtle language, grammar learning
results present 100% parse-ability and parse-quality. When using English - parse-abil-
ity in range 50-100% and parse-quality 50-65%. Based on that, we conclude the
problem of automatic learning of formal grammar can be solved with accuracy
50-100%, given corpora that we have tried. For both corpora, better parse-ability
and parse-quality are provided with MST parsing based on MI with account for
distance, building vector space of connectors, then using dimensionality reduc-
tion and K-means clustering with subsequent grammar induction by means of ei-
ther Connectors or Disjuncts.

5 Conclusion

The primary conclusion of our work is that it is possible to learn formal grammar pro-
grammatically based on etalon parses corpus, with possibility to use the grammar for
parsing the texts in given language automatically with accuracy in range 50-100%,
depending on language. In particular, it has been confirmed for Link Grammar and for
very simple controlled corpora in Turtle and English languages. 

The secondary conclusion is that statistical parsing can be used for the purpose
above, using MST parsing in particular, with account for distance between words
when computing mutual information. 

Our further plans involve upscaling our approach for using larger corpora, such as
Gutenberg Children and Adult an others. We also plan to involve word-sense disam-
biguation and generalization stages trying to improve parse-ability and parse-quality
of the results of parsing with learned grammar. Finally, testing approach would get
improved so combination of testing learned grammars on novel corpus data not used
for grammar learning will be used for any given language.
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