2019-02-20
¶"Gutenberg Children Books" corpus "LG-English-clean" dataset, ,
trash filter off: min_word_count = 31,21,11,6,2
, max_sentence_length
off, Link Grammar 5.5.1.
This notebook is shared as static Mean-shift-clustering-GCB-LG-E-clean-2019-02-20.html.
Output data shared via Mean-shift-clustering-GCB-LG-E-clean-2019-02-20 directory.
import os, sys, time
module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path: sys.path.append(module_path)
from src.grammar_learner.utl import UTC, test_stats
from src.grammar_learner.read_files import check_dir, check_corpus
from src.grammar_learner.write_files import list2file
from src.grammar_learner.widgets import html_table
from src.grammar_learner.pqa_table import table_rows, params, wide_rows
tmpath = module_path + '/tmp/'
check_dir(tmpath, True, 'none')
start = time.time()
runs = (1,1)
print(UTC(), ':: module_path:', module_path)
corpus = 'GCB' # 'Gutenberg-Children-Books-Caps'
dataset = 'LG-E-clean'
kwargs = {
'left_wall' : '' ,
'period' : False ,
'context' : 1 ,
'min_word_count': 1 , # 11, 1
'word_space' : 'sparse' ,
'clustering' : ('mean_shift', 2),
'clustering_metric' : ['silhouette', 'cosine'],
'cluster_range' : [0] , # auto
'top_level' : 0.01 ,
'grammar_rules' : 2 ,
'max_disjuncts' : 1000000 , # off
'stop_words' : [] ,
'tmpath' : tmpath ,
'verbose' : 'log+' ,
'template_path' : 'poc-turtle',
'linkage_limit' : 1000 }
rp = module_path + '/data/' + corpus + '/LG-E-clean/GCB-LG-English-clean.ull'
cp = rp # corpus path = reference_path
out_dir = module_path + '/output/' + 'Mean-shift-clustering-GCB-LG-E-clean-2018-02-20' + str(UTC())[:10]
print(UTC(), '\n', out_dir)
min_word_count = 31, 21, 11, 6, 2
¶%%capture
table = []
line = [['', corpus, dataset, 0, 0, 'none']]
kwargs['min_word_count'] = 31
a, _, header, log, rules = wide_rows(line, out_dir, cp, rp, runs, **kwargs)
#header[0] = 'Cell'
table.extend(a)
display(html_table([header] + a)); print(test_stats(log))
%%capture
kwargs['min_word_count'] = 21
a, _, h, log, rules = wide_rows(line, out_dir, cp, rp, runs, **kwargs)
table.extend(a)
display(html_table([header] + a)); print(test_stats(log))
%%capture
kwargs['min_word_count'] = 11
a, _, h, log, rules = wide_rows(line, out_dir, cp, rp, runs, **kwargs)
table.extend(a)
display(html_table([header] + a)); print(test_stats(log))
%%capture
kwargs['min_word_count'] = 6
a, _, h, log, rules = wide_rows(line, out_dir, cp, rp, runs, **kwargs)
table.extend(a)
display(html_table([header] + a)); print(test_stats(log))
%%capture
kwargs['min_word_count'] = 2
a, _, h, log, rules = wide_rows(line, out_dir, cp, rp, runs, **kwargs)
table.extend(a)
display(html_table([header] + a)); print(test_stats(log))
display(html_table([header] + table))
print(UTC(), ':: finished, elapsed', str(round((time.time()-start)/3600.0, 1)), 'hours')
table_str = list2file(table, out_dir + '/all_tests_table.txt')
print('Results saved to', out_dir + '/all_tests_table.txt')
Results for "Gutenberg Children Books" corpus with min_word_count = 51, 11, 1
are shared as static Mean-shift-clustering-GCB-LG-E-clean-2019-02-18.html.