Child Directed Speech test 2018-11-30 beta version (parts)

Based on Child-Directed-Speech-2018-10-24.html. Non-working tests 2.1, 2.2 (cDRK*) deleted, to be added to the final version.
This notebook is shared as static Child-Directed-Speech-2018-11-30.html, data -- Child-Directed-Speech-2018-11-30 directory.
Previous (reference) tests: Child-Directed-Speech-2018-10-19.html, Child-Directed-Speech-2018-08-14.html, Child-Directed-Speech-2018-08-06.html.

Basic settings

In [1]:
import os, sys, time
module_path = os.path.abspath(os.path.join('..'))
if module_path not in sys.path: sys.path.append(module_path)
from src.grammar_learner.utl import UTC
from src.grammar_learner.read_files import check_dir
from src.grammar_learner.write_files import list2file
from src.grammar_learner.widgets import html_table
from src.grammar_learner.pqa_table import table_rows
tmpath = module_path + '/tmp/'
check_dir(tmpath, True, 'none')
table = []
long_table = []
start = time.time()
print(UTC(), ':: module_path =', module_path)
2018-11-30 16:05:06 UTC :: module_path = /home/obaskov/94/language-learning

Corpus test settings

In [2]:
out_dir = module_path + '/output/Child-Directed-Speech-' + str(UTC())[:10] + '_'
runs = (1,1)
if runs != (1,1): out_dir += '-multi'
kwargs = {
    'left_wall'     :   ''          ,
    'period'        :   False       ,
    'word_space'    :   'vectors'   ,
    'clustering'    :   ['kmeans', 'kmeans++', 10],
    'cluster_range' :   [30,120,3,3],
    'cluster_criteria'  : 'silhouette',
    'clustering_metric' : ['silhouette', 'cosine'],
    'cluster_level' :   1           ,
    'rules_merge'       :   0.8     , # grammar rules merge threshold
    'rules_aggregation' :   0.2     , # grammar rules aggregation threshold
    'top_level'         :   0.01    , # top-level rules generalization threshold
    'tmpath'        :   tmpath      , 
    'verbose'       :   'min'       ,
    'template_path' :   'poc-turtle',
    'linkage_limit' :   1000        }
lines = [
    [33, 'CDS-caps-br-text+brent9mos' , 'LG-English'                     ,0,0, 'none'  ], 
    [34, 'CDS-caps-br-text+brent9mos' , 'LG-English'                     ,0,0, 'rules' ], 
    [35, 'CDS-caps-br-text+brent9mos' , 'R=6-Weight=6:R-mst-weight=+1:R' ,0,0, 'none'  ], 
    [36, 'CDS-caps-br-text+brent9mos' , 'R=6-Weight=6:R-mst-weight=+1:R' ,0,0, 'rules' ]]
cp = rp = module_path + '/data/CDS/LG-E-clean'  # clean: both files, 100% parsed
cp = rp  # test corpus path = reference_path

ULL Project Plan ⇒ Parses ⇒ lines 33-36, by columns (K-N), (O-Q)

Disjuncts-DRK-Disjuncts

In [7]:
%%capture
kwargs['context'] = 2
kwargs['word_space'] = 'vectors'
kwargs['clustering'] = 'kmeans'
kwargs['grammar_rules'] = 2
average23, long23, header = table_rows(lines, out_dir, cp, rp, runs, **kwargs)
table.extend(average23)
long_table.extend(long23)
In [8]:
display(html_table([header]+average23))
LineCorpusParsingLWRWGen.SpaceRulesSilhouettePAPQF1
33CDS-caps-br-text+brent9mosLG-English --- --- nonedDRKd760.3499%91%0.92
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdDRKd800.3499%89%0.91
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedDRKd890.586%47%0.50
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdDRKd890.586%47%0.50

Disjuncts-ILE-Disjuncts

In [9]:
%%capture
kwargs['context'] = 2
kwargs['word_space'] = 'discrete'
kwargs['clustering'] = 'group'
kwargs['grammar_rules'] = 2
average24, long24, header = table_rows(lines, out_dir, cp, rp, runs, **kwargs)
table.extend(average24)
long_table.extend(long24)
In [10]:
display(html_table([header]+average24))
LineCorpusParsingLWRWGen.SpaceRulesSilhouettePAPQF1
33CDS-caps-br-text+brent9mosLG-English --- --- nonedILEd2980 --- 99%97%0.97
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdILEd2423 --- 99%97%0.98
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedILEd3558 --- 0%0%0.00
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdILEd3415 --- 69%43%0.45

Disjuncts-ALE-Disjuncts

Linkage/affinity: ward/euclidean

In [14]:
%%capture
kwargs['clustering'] = ['agglomerative', 'ward']
kwargs['clustering_metric'] = ['silhouette', 'cosine']
kwargs['min_word_count'] = 1
kwargs['min_link_count'] = 1
kwargs['min_co-occurrence_count'] = 1
kwargs['cluster_range'] = 400
average31, long31, header = table_rows(lines, out_dir, cp, rp, runs, **kwargs)
table.extend(average31)
long_table.extend(long31)
In [15]:
display(html_table([header] + average31))
LineCorpusParsingLWRWGen.SpaceRulesSilhouettePAPQF1
33CDS-caps-br-text+brent9mosLG-English --- --- nonedALEd400 --- 99%94%0.96
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdALEd281 --- 99%95%0.95
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedALEd400 --- 73%43%0.46
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdALEd291 --- 82%47%0.50

Linkage/affinity: complete/cosine

In [16]:
%%capture
kwargs['clustering'] = ['agglomerative', 'complete', 'cosine']
average32, long32, header = table_rows(lines, out_dir, cp, rp, runs, **kwargs)
table.extend(average32)
long_table.extend(long32)
In [18]:
display(html_table([header] + average32))
LineCorpusParsingLWRWGen.SpaceRulesSilhouettePAPQF1
33CDS-caps-br-text+brent9mosLG-English --- --- nonedALEd400 --- 99%75%0.76
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdALEd399 --- 99%75%0.76
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedALEd400 --- 89%50%0.52
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdALEd400 --- 89%50%0.52

Linkage/affinity: average/cosine

In [19]:
%%capture
kwargs['clustering'] = ['agglomerative', 'complete', 'cosine']
average33, long33, header = table_rows(lines, out_dir, cp, rp, runs, **kwargs)
table.extend(average33)
long_table.extend(long33)
In [20]:
display(html_table([header] + average33))
LineCorpusParsingLWRWGen.SpaceRulesSilhouettePAPQF1
33CDS-caps-br-text+brent9mosLG-English --- --- nonedALEd400 --- 99%75%0.76
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdALEd399 --- 99%75%0.76
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedALEd400 --- 89%50%0.52
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdALEd400 --- 89%50%0.52

All tests

In [21]:
display(html_table([header]+long_table))
LineCorpusParsingLWRWGen.SpaceRulesSilhouettePAPQF1
33CDS-caps-br-text+brent9mosLG-English --- --- nonedDRKd 76 0.3499%91%0.92
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdDRKd 80 0.3499%89%0.91
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedDRKd 89 0.586%47%0.50
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdDRKd 89 0.586%47%0.50
33CDS-caps-br-text+brent9mosLG-English --- --- nonedILEd 2980 --- 99%97%0.97
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdILEd 2423 --- 99%97%0.98
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedILEd 3558 --- 0%0%0.00
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdILEd 3415 --- 69%43%0.45
33CDS-caps-br-text+brent9mosLG-English --- --- nonedALEd 400 --- 99%94%0.96
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdALEd 281 --- 99%95%0.95
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedALEd 400 --- 73%43%0.46
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdALEd 291 --- 82%47%0.50
33CDS-caps-br-text+brent9mosLG-English --- --- nonedALEd 400 --- 99%75%0.76
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdALEd 399 --- 99%75%0.76
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedALEd 400 --- 89%50%0.52
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdALEd 400 --- 89%50%0.52
33CDS-caps-br-text+brent9mosLG-English --- --- nonedALEd 400 --- 99%75%0.76
34CDS-caps-br-text+brent9mosLG-English --- --- rulesdALEd 399 --- 99%75%0.76
35CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- nonedALEd 400 --- 89%50%0.52
36CDS-caps-br-text+brent9mosR=6-Weight=6:R-mst-weight=+1:R --- --- rulesdALEd 400 --- 89%50%0.52
In [22]:
print(UTC(), ':: finished, elapsed', str(round((time.time()-start)/3600.0, 1)), 'hours')
table_str = list2file(table, out_dir+'/short_table.txt')
if runs == (1,1):
    print('Results saved to', out_dir + '/short_table.txt')
else:
    long_table_str = list2file(long_table, out_dir+'/long_table.txt')
    print('Average results saved to', out_dir + '/short_table.txt\n'
          'Detailed results for every run saved to', out_dir + '/long_table.txt')
2018-11-30 18:27:11 UTC :: finished, elapsed 2.4 hours
Results saved to /home/obaskov/94/language-learning/output/Child-Directed-Speech-2018-11-30_/short_table.txt